
A Compressed And Multidimensional Container For
Big Medium Size Data

@FrancescAlted

Freelancer

A Member of the FamilySponsored by

The Big Debate (I)

“Put simply, the format landscape has scaled beyond a
manageable level.”

–OME's position regarding file formats

https://blog.openmicroscopy.org/community/file-formats/2019/06/25/formats/

Evolution of proprietary 
 file formats by Bio-Formats

Source: Euro-Bioimaging Industry Board

https://blog.openmicroscopy.org/community/file-formats/2019/06/25/formats/

The Big Debate (II)
• My position on adding new formats is that we absolutely

need them for adapting not only to different use cases but
also to the rapidly evolving storage technology.

• In particular, I claim that we need more in-memory
compressed formats because I see memory more and
more as another storage layer, and high-speed
compression can help on using memory more efficiently.

• Having said that, we *absolutely need* to adopt open
formats for reducing the maintenance burden and
facilitate its adoption more quickly.

What is Caterva?
• It is an open source C library and a format that allows to

store large multidimensional, chunked, compressed
datasets.

• Data can be stored either in-memory or on-disk, but the
API to handle both versions is the same.

• Compression is handled transparently for the user by
adopting the Blosc2 library.

• cat4py is a thin wrapper for Python.

Caterva Brings Powerful
Slicing Capabilities

• Caterva’s main feature is to be
able to extract all kind of
slices out of high dimensional
datasets, efficiently.

• Resulting slices can be either
Caterva containers or regular
plain buffers (for better
interaction with e.g. NumPy).

Compression and Partitions

• Caterva normally splits the dataset into so-called 
partitions (aka chunks in Blosc idiom).

• Such partitions can be compressed individually.

Accessing Chunked
Datasets

Those used to manipulate
chunked multidimensional
arrays know how critical
choosing the partition size is.

https://github.com/Blosc/cat4py/blob/master/notebooks/compare_getslice.ipynb

https://github.com/Blosc/cat4py/blob/master/notebooks/compare_getslice.ipynb

Performance In-Memory

Caterva is meant to read data very fast!

Performance On-Disk

Caterva still has room for optimization when reading from disk!

Brief Comparison Against Well
Known Chunked Containers

HDF5 Zarr Caterva

Solid Yes No 
(1 file per chunk) Yes

Mature Yes Yes In process

In-memory 
 version?

Yes 
(sequential?)

Yes 
(sparse)

Yes  
(sequential / sparse)

Hierarchical Yes Yes No 
(use the filesystem)

Blosc2
• Blosc2 is the next generation of the well-known Blosc (aka Blosc1).

• New features:

• Enlargeable 64-bit containers: in-memory or on-disk

• New compression codecs

• New filters

• Metalayers

• User metadata

A Few Words About Blosc1

• Blosc1 (or just Blosc) was the original meta-codec that
was meant to be used to accelerate operation in PyTables
(HDF5), but it became stand-alone pretty soon.

• Blosc1 is distributed with different codecs and filters so
that it is very easy to be adopted by third-party libraries.

• It is already 10 years old, and since its inception it has
seen a broad adoption in different libraries implementing
data containers.

Compression Speed

http://alimanfoo.github.io/2016/09/21/genotype-compression-benchmark.html

http://alimanfoo.github.io/2016/09/21/genotype-compression-benchmark.html

!

Decompression Speed

http://alimanfoo.github.io/2016/09/21/genotype-compression-benchmark.html

http://alimanfoo.github.io/2016/09/21/genotype-compression-benchmark.html

Containers in Blosc2

Header

Codec

Filter pipeline

…

MetaLayers

Chunk Index

Trailer
UserMeta

Fingerprint

Chunk 0
Chunk 1
Chunk 2

Frame

MetaLayers

Pointers

Chunk 0

Chunk 1

Chunk 2

Codec

Filter pipeline

….

Super-chunk

UserMeta

• Sparse

• In-memory

• Sequential

• In-memory / On-disk

}
}

• Metalayers are small metadata for informing about the
kind of data that is stored on a Blosc2 container.

• Example: Caterva defines a metalayer for
multidimensional data, but another library can add
another metalayer for specifying the type. 
[https://github.com/Blosc/cat4py/blob/master/notebooks/
array-metalayer.ipynb]

• They are handy for defining layers with different specs:
multi-dimensions, types, geo-spatial…

MetaLayers in Blosc2

https://github.com/Blosc/cat4py/blob/master/notebooks/array-metalayer.ipynb
https://github.com/Blosc/cat4py/blob/master/notebooks/array-metalayer.ipynb
https://github.com/Blosc/cat4py/blob/master/notebooks/array-metalayer.ipynb

Container

MD-Type

Machine 
Learning

GenomicsGeoSpatial

Microscopy

Astronomy Nuclear

Layer1
Layer2

Multiple layers to target different data aspects

MetaLayers in Blosc2

Caterva MetaLayer
Caterva specifies a metalayer on top of a Blosc2 container
for storing multidimensional information:

typedef struct {
 int8_t ndim;
 //!< The number of dimensions
 uint64_t dims[CATERVA_MAXDIM];
 //!< The size of each dimension
 int32_t pdims[CATERVA_MAXDIM];
 //!< The size of each partition dimension
} caterva_dims_t;

Such metalayer can be modified so that the shapes can be
updated (e.g. an array can grow or shrink).

Frame Format and
MetaLayers Specs

• The format for a Blosc2 frame is completely specified at:

• https://github.com/Blosc/c-blosc2/blob/master/
README_FRAME_FORMAT.rst

• The format for a Caterva metalayer:

• https://github.com/Blosc/Caterva/blob/master/
README_CATERVA_METALAYER.rst

Everything specified in the msgpack format.

https://github.com/Blosc/c-blosc2/blob/master/README_FRAME_FORMAT.rst
https://github.com/Blosc/c-blosc2/blob/master/README_FRAME_FORMAT.rst
https://github.com/Blosc/Caterva/blob/master/README_CATERVA_METALAYER.rst
https://github.com/Blosc/Caterva/blob/master/README_CATERVA_METALAYER.rst
https://msgpack.org

IronArray

• High-performance
matrix and vector
computations.

• Optimized for
compressed in-memory
multi-dimensional data.

• Language specific API’s
leveraging a powerful C
kernel. 

Example of IronArray API
for Python

• There are wrappers for Java too.

• An R wrapper could also be interesting in the future.

import iarray as ia

shape = [10 * 1000 * 1000]
pshape = [100 * 1000]
cparams = dict(clib=ia.LZ4, clevel=1, nthreads=2)

xa = ia.linspace(ia.dtshape(shape=shape, pshape=pshape_), 0., 10., **cparams)

Evaluate a polynomial
ya = ((xa - 1.35) * (xa - 4.45) * (xa - 8.5)).eval()

IronArray Availability

• A beta version is planned for November.

• It will follow a production-ready version later in the year.

• Commercially available, with a possible Community
Edition.

Stay tuned!

Overview
• Caterva is a C library and a metalayer for handling

multidimensional data on top of Blosc2 containers.

• cat4py leverages Caterva and Blosc2 for building
multidimensional containers that can be very large.

• You can use metalayers for adapting Blosc2/Caterva
containers to your own needs.

• Beware: Do not reinvent the wheel and build on top of
existing metalayers!

Help Needed!

• Caterva and specially cat4py are quite new and still need
a fair amount of love in terms of documentation, API
consistency and testing in general before they are apt for
general consumption.

• Please join us in our sprint on Friday morning if you are
interested in helping us to reach production quality as
soon as possible.

 You are welcome!

Acknowledgements
• First and foremost to Aleix Alcacer who

contributed most of the code behind
Caterva.

• Christian Steiner, for suggestions and
improvements on Blosc2 / Caterva projects.

• Pepe Aracil, for his proposal for using
msgpack for serializing Blosc2 containers.

• Last but not least, NumFOCUS for providing
funding for developing Blosc2 and Caterva.

Thank You!

Questions?

