HDF5 & Blosc2

A Proposal For Working As A Team

Francesc Alted / @FrancescAlted
The Blosc Development Team / @Blosc2
CEO [[]ironArray / @ironArray

LEAPS Innov WP7 (data reduction and compression) meeting
May 4th 2022

BLesC

I What is Blosc?

v

Sending data from
CPU to memory (and
back) faster than

memcpy().

Split in blocks for
better cache use:
divide and conquer.

It can use different
filters (e.g. shuffle,
bitsuffle) and codecs
(e.q. LZ4, Zlib, Zstd,
BloscLZ).

Binary
dataset
(Chunk)

Blosc
Container

BLesC

Aleix Alcacer
\ ‘___'val

The Blosc
Development
Team

ﬂ Francesc Alted (BDFL)

Origins of Blosc Blase

« 2009: it was very clear that compression was slowing down storage in
PyTables/HDFS5 a lot. Work began.

« 2010: Blosc 1.0 was ready for production. Innovations:
- Shuffle filter was optimized for SSE2 (*much* faster)
« Multithreaded operation

« 2013: Blosc gained multi-codec (LZ4, Snappy and Zlib where included)
« 2015: hdf5-blosc plugin for HDF5 was released (hdf5plugin took over!)

« 2021: Blosc2 appeared with lots of new features.

What is Blosc2? ~

Blosc2 Frame

. Blosc2 is the next generation
of Blosc1.

. New 63-bit containers
(frames) that expand over
the existing 31-bit containers
(chunks) in Blosc1.

. Metalayers for adding info
for applications.

. Area for adding metadata for
users (variable length).

Bt

Example of Decompression Speed

Summing up precipitation data (381.5 MB, float32)

BN Uncompressed
804 mmm blosclz cl-1 (3.7x cr)
B z4 cl-1 (4.5x cr)
70 { W |z4hc cl-1 (5.0x cr)
B zstd cl-1 (5.9x cr)
60
2
o 50 A
S
®
(V] 40 -
[eX
wn
30 A
20 A
10 A
0 .

1 2 < 8 12 14 16 20 24 28 32
Threads

https://www.blosc.org/posts/breaking-memory-walls/

https://www.blosc.org/posts/breaking-memory-walls/

BrosC

[= o o S
0% 0 %% ,
n 000000 000000 ¥
0 o% oo
©
(7))
c
()
E
© I
e
-
(7))
()
@
(@)
NS
= v _)
y * m—
% 2 > & &=z
n © h= =
= ¢c 5 G £c
@)
B w.ﬂ o =X w g.2
) - C W m v ._m. &
S o o 9 § = @
T ST VUVE Vvuw wuD
() m ¥ Cc o C Imm ._hL =
& =€ won wo <€

HDF5: Multidimensions and Chunking BlosC

« Data can be stored in hypercubes, making retrieval very convenient.

o1 HDF5S

« Butthere is a price to pay for this flexibility: HDF5 is known to be
slow when retrieving (hyperslabs of) data.

Direct Chunk FoF BlosC

The HDF Group

[]
Write/Read Feature / i (\
Raw data chunk :
T Data
Data > conversion
gathering buffer

H5Dwrite

« Allow the aplication to handle 2R
the chunk I/O and bypass the Rawdats chrk :
powerful (but slow!) chunk T 8
handling machinery in HDFS5. —— & d i

« The result is that data can be
handled up to about 10x
faster, provided efficient pre
and post processing. K

<
>
4l B
@
z

Proposal 1: Use Blosc2 Inside Direct Chunk /B¢

Make Blosc2 to pre- and post-process chunk data for:

- Handle double partitioning

« Multithreaded compression/decompression

 Parallel I/O (important to achieve higher IOPS in SSDs)

« When second partition fits well in L1/L2 CPU caches => speed!

- In addition, if the Caterva layer is used => multidim partitions
(this can be useful for ZFP, SZ or JPEG codecs)

Blosc2 Advantages

BLesC

Blosc2: Fine Tuned Cache Usage

Compression: chunks are split in blocks for CPU cache sake

Blocks
Filters
1 Prefilter pipeline Codec
Thread 1 src1 —>| tmp1 | ——> | tmp2 %- o
>
(0N
n 3
~ Q9
Thread 2 src2 —>| tmp1 | ———> | tmp2 | — |c_src2 %_.3,,
=
i
Thread 3 src3 | ———>| tmpl | ———> | tmp2 %- g
<

Buffers are reused inside CPU caches -> speed!

BLosC

Blosc2: Leveraging I/O Parallelism

Decompression: blocks are read in parallel from storage

Blocks
Filters
Postfilter pipeline Codec l
Thread 1 srcl |<—— | tmp1l | <—— | tmp2 F- o
)
o
n A
A~ Q
Thread 2 src2 S| tmp1 | < | tmp2 |<— |c_sre2 %_.3,,
S5 o
23
Thread 3 src3 |<—— | tmpl |<—— | tmp2 %- g
<

Parallel 1/0 in action!

BLosC

BussC

Blosc2: Paralellism and Efficiency

Memory profile

= l.iarray: mean_disk
3000

» Inthe plot: 3 compressed
arrays are decompresseq, ka5 —— 3.hdf5: mean_disk
operated, and the result is
compressed again.

2.zarr: mean_disk

2000

 ironArray is using Blosc2. 1500

Memory used (in MiB)

« When handled correctly,
parallelism can buy not only
speed, but also less memory . u
resources!

1000

0 1 2 3 4 5

Time (in seconds)

Mean of 3 arrays of 3 GB each (on disk)

BLesC

Adaptability: Plugins in Local Registry

User defined filter:

int urfilter2(
blosc2 filter *filter) {

To register locally:

blosc2 register filter(

urfilter?2)

Filters registry

BLOSC_SHUFFLE

1

BLOSC BITSHUFFLE 2
BLOSC DELTA 3
BLOSC NDCELL 32
BLOSC NDMEAN 33
urfilter1 160
urfilter2 161

[] Blosc official registered filters
[User local filters

Can be used now:

—> cparams.filters[4] = 161;

(Similar functionality to the plugin interface in HDF5)

Registering Global Plugins in Blosc2 ~

User plugin

GitHub
—————>

Pull Request

e
Blosc
development team

Y,

_ To global
Evaluation registry
—————>

process
Specifications
not fulfilled

Specs: https://github.com/Blosc/c-blosc2/blob/main/plugins/README.md

https://github.com/Blosc/c-blosc2/blob/main/plugins/README.md

. . . . BLesC
Deploying Plugins in Central Registry

Central registered plugins are included and distributed within
the Blosc2 library. Can be installed using the Python wheels:

bash-3.2% pip install blosc2 --no-cache-dir
Collecting blosc2
Downloading blosc2-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl (4.0 MB)
| < 0 VB 3.4 MB/s
Installing collected packages: blosc2
Successfully installed blosc2-0.2.0

Very convenient in making your filter/codec accessible for everybody!

Benefits of Adding the Caterva Layer Blos¢

 Getimproved
compression ratio
because data is packed in a
way that can show higher
spatial locality.

« Also, get improved
hyperslab query speed,
i.e. some blocks can be
masked out so as to not
read them.

ZFP: supported as a registered plugin

SO0
44 4
’.’ 44
0’000.
EX

R

4

Much more selective and faster queries!

Caterva (https://github.com/Blosc/caterva) and ironArray (https://ironarray.io)

Masked & paralel I/O in multidim datasets BlosC

https://github.com/Blosc/caterva
https://ironarray.io/

Block Masks and Parallel I/O

Block maskout

Index

15

ol

I/

4) 6 4
Tl
12|13 14 15‘

Thread 1: 1,5, 9
Thread 2: 2, 6, 10

Thread 3: 3, 7, 11

Specially effective when retrieving slices of multidim datasets.

BLosC

Masked & Paralel I/0 in Multidim Datasets‘

Slicing Performance on disk (with an optimized dimension)

1

dim0 dim1 dim2

B 1.iarray_disk
B 2.zarr_disk
B 3.hdf5_disk
B 4.tiledb_disk

Time (in seconds)
w B w [e)]

N

[

0

Better performance in general
(except for dimensions where retrieving a chunk is already optimal)

https://ironarray.io/docs/html/tutorials/03.Slicing Datasets and Creating Views.html

https://ironarray.io/docs/html/tutorials/03.Slicing_Datasets_and_Creating_Views.html

Proposal 2: Help in Determing Optimal BLos€

Compression Pipelines

We are offering a service for adapting to the user data, and
determining:

« Set of most useful codecs to be used

« Set of most useful filters to be used

We produce specific versions of BTune, a machine learning tool for
selecting the best pipeline candidate on a chunk by chunk basis, that
adapts to the needs of the user.

BussC

Fine tuning performance with BTune

BTune State Diagram

« BTune can fine tune the
different parameters of the
underlying Blosc2 storage to
perform as best as possible.

 Active during the
compression pipeline.
Automatically learns the
best parameters on the go.

Conclusion

Blosc2 Helps Saving Resources BleiC

Blosc2 orchestrates a rich set of codecs and filters for:

« CPU parallelization via multithreading

* Reuse and sharing internal buffers for optimal
memory consumption

- Parallel I/O
« Selective hyperslab selections

In addition, new filter & codec can be registered.

The result is a highly efficient tool for
compressing and accessing your data your way

Proposal Summary Blas¢

1. Use Blosc2 in combination with HDF5 direct chunking mechanism
for efficient compression and parallel I/O.

2. Help in determing optimal compression pipelines by adapting to
user data and using machine learning techniques.

Thanks to donors ~
& contractors!

;‘é [] IronArray

HUAWEI

NUMFOCUS

OPEN CODE = BETTER SCIENCE

@ pythonsis,

Google

4
........
.....

Jefaoy., leff

. Hammerbacher

Without them, we could not have possibly put Blosc2 into production
status: Blosc2 2.0.0 came out in June 2021; now at 2.1.0.

Enjoy data!

https://blosc.org/

