
HDF5 & Blosc2
A Proposal For Working As A Team

Francesc Alted / @FrancescAlted

The Blosc Development Team / @Blosc2

CEO / @ironArray

LEAPS Innov WP7 (data reduction and compression) meeting
May 4th 2022

What is Blosc?

ü Sending data from
CPU to memory (and
back) faster than
memcpy().

ü Split in blocks for
better cache use:
divide and conquer.

ü It can use different
filters (e.g. shuffle,
bitsuffle) and codecs
(e.g. LZ4, Zlib, Zstd,
BloscLZ).

Block 1

Block 2

...

Block N...

L1/L2
Cache

CPU

Binary
dataset
(Chunk)

Blosc
Container

The Blosc
Development
Team

Aleix Alcacer

Oscar Guiñón

Marta Iborra

Alberto Sabater

Nathan Moinvaziri

Francesc Alted (BDFL)

Origins of Blosc

• 2009: it was very clear that compression was slowing down storage in
PyTables/HDF5 a lot. Work began.

• 2010: Blosc 1.0 was ready for production. Innovations:

• Shuffle filter was optimized for SSE2 (*much* faster)
• Multithreaded operation

• 2013: Blosc gained multi-codec (LZ4, Snappy and Zlib where included)
• 2015: hdf5-blosc plugin for HDF5 was released (hdf5plugin took over!)
• 2021: Blosc2 appeared with lots of new features.

What is Blosc2?

ü Blosc2 is the next generation
of Blosc1.

ü New 63-bit containers
(frames) that expand over
the existing 31-bit containers
(chunks) in Blosc1.

ü Metalayers for adding info
for applications.

ü Area for adding metadata for
users (variable length).

Filter Pipeline
Itemsize

…
Metalayers

Chunk 0
Chunk 1

Chunk N

…

Chunk Index

UserMeta

Blosc2 Frame

Example of Decompression Speed

https://www.blosc.org/posts/breaking-memory-walls/

https://www.blosc.org/posts/breaking-memory-walls/

Caterva: Blosc2 Goes Multidimensional

ü Metalayer representing
multidimensionality

ü Each Caterva array is
split in chunks

ü Each chunk is split in
blocks

ü All the partitions are
multidimensional!

HDF5: Multidimensions and Chunking

• Data can be stored in hypercubes, making retrieval very convenient.

• But there is a price to pay for this flexibility: HDF5 is known to be
slow when retrieving (hyperslabs of) data.

Direct Chunk
Write/Read Feature

• Allow the aplication to handle
the chunk I/O and bypass the
powerful (but slow!) chunk
handling machinery in HDF5.

• The result is that data can be
handled up to about 10x
faster, provided efficient pre
and post processing.

Proposal 1: Use Blosc2 Inside Direct Chunk

Make Blosc2 to pre- and post-process chunk data for:

• Handle double partitioning
• Multithreaded compression/decompression
• Parallel I/O (important to achieve higher IOPS in SSDs)
• When second partition fits well in L1/L2 CPU caches => speed!
• In addition, if the Caterva layer is used => multidim partitions

(this can be useful for ZFP, SZ or JPEG codecs)

Blosc2 Advantages

Blosc2: Fine Tuned Cache Usage

Prefilter Codec

src1 c_src1

Compression: chunks are split in blocks for CPU cache sake

tmp1 tmp2

Filters
pipeline

src2 c_src2tmp1 tmp2

src3 c_src3tmp1 tmp2

Thread 1

Thread 2

Thread 3

Fram
e

either
on disk or in m

em
ory

Buffers are reused inside CPU caches -> speed!

Blocks

Fram
e

either
on disk or in m

em
ory

Blosc2: Leveraging I/O Parallelism

src1 c_src1

Decompression: blocks are read in parallel from storage

tmp1 tmp2

src2 c_src2tmp1 tmp2

src3 c_src3tmp1 tmp2

Thread 1

Thread 2

Thread 3

Postfilter Codec
Filters
pipeline

Parallel I/O in action!

Blocks

Blosc2: Paralellism and Efficiency

• In the plot: 3 compressed
arrays are decompressed,
operated, and the result is
compressed again.

• ironArray is using Blosc2.

• When handled correctly,
parallelism can buy not only
speed, but also less memory
resources!

Mean of 3 arrays of 3 GB each (on disk)

Adaptability: Plugins in Local Registry

BLOSC_SHUFFLE 1

BLOSC_BITSHUFFLE 2

BLOSC_DELTA 3

. . .

BLOSC_NDCELL 32

BLOSC_NDMEAN 33

. . .

urfilter1 160

urfilter2 161

. . .

Filters registry

cparams.filters[4] = 161;

Can be used now:To register locally:

int urfilter2(
blosc2_filter *filter) {
…

}

blosc2_register_filter(
urfilter2)

Blosc official registered filters
User local filters

User defined filter:

(Similar functionality to the plugin interface in HDF5)

Registering Global Plugins in Blosc2

GitHub

Pull Request
User plugin Blosc

development team

Evaluation

process

To global
registry

Specifications
not fulfilled

Specs: https://github.com/Blosc/c-blosc2/blob/main/plugins/README.md

https://github.com/Blosc/c-blosc2/blob/main/plugins/README.md

Deploying Plugins in Central Registry

Central registered plugins are included and distributed within
the Blosc2 library. Can be installed using the Python wheels:

Very convenient in making your filter/codec accessible for everybody!

Benefits of Adding the Caterva Layer

• Get improved
compression ratio
because data is packed in a
way that can show higher
spatial locality.

• Also, get improved
hyperslab query speed,
i.e. some blocks can be
masked out so as to not
read them.

ZFP: supported as a registered plugin

Masked & paralel I/O in multidim datasets

Much more selective and faster queries!
Caterva (https://github.com/Blosc/caterva) and ironArray (https://ironarray.io)

https://github.com/Blosc/caterva
https://ironarray.io/

0 1

4 5 6

2

1098 11

7

3

15141312

Thread 1: 1, 5, 9

Thread 2: 2, 6, 10

Thread 3: 3, 7, 11

Block maskout F T T T F T T T F T T T F T T T

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Block Masks and Parallel I/O

Specially effective when retrieving slices of multidim datasets.

Masked & Paralel I/O in Multidim Datasets

Better performance in general
(except for dimensions where retrieving a chunk is already optimal)

https://ironarray.io/docs/html/tutorials/03.Slicing_Datasets_and_Creating_Views.html

https://ironarray.io/docs/html/tutorials/03.Slicing_Datasets_and_Creating_Views.html

Proposal 2: Help in Determing Optimal
Compression Pipelines

We are offering a service for adapting to the user data, and
determining:
• Set of most useful codecs to be used
• Set of most useful filters to be used

We produce specific versions of BTune, a machine learning tool for
selecting the best pipeline candidate on a chunk by chunk basis, that
adapts to the needs of the user.

Fine tuning performance with BTune

• BTune can fine tune the
different parameters of the
underlying Blosc2 storage to
perform as best as possible.

• Active during the
compression pipeline.
Automatically learns the
best parameters on the go.

Conclusion

Blosc2 Helps Saving Resources

Blosc2 orchestrates a rich set of codecs and filters for:

• CPU parallelization via multithreading
• Reuse and sharing internal buffers for optimal

memory consumption
• Parallel I/O
• Selective hyperslab selections

In addition, new filter & codec can be registered.

The result is a highly efficient tool for
compressing and accessing your data your way

Proposal Summary

1. Use Blosc2 in combination with HDF5 direct chunking mechanism
for efficient compression and parallel I/O.

2. Help in determing optimal compression pipelines by adapting to
user data and using machine learning techniques.

Thanks to donors
& contractors!

Without them, we could not have possibly put Blosc2 into production
status: Blosc2 2.0.0 came out in June 2021; now at 2.1.0.

Jeff
Hammerbacher

Enjoy data!

https://blosc.org/

